Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.800
Filtrar
Más filtros

Intervalo de año de publicación
1.
Sci Rep ; 14(1): 5798, 2024 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-38461314

RESUMEN

In this research, palladium (II) and platinum (II), as well as their bimetallic nanoparticles were synthesized using medicinal plants in an eco-friendly manner. Rosemary and Ginseng extracts were chosen due to their promising anticancer potential. The synthesized nanoparticles underwent characterization through FT-IR spectroscopy, DLS, XRD, EDX, SEM, and TEM techniques. Once the expected structures were confirmed, the performance of these nanoparticles, which exhibited an optimal size, was evaluated as potential anticancer agents through in vitro method on colon cancer cell lines (Ls180, SW480). MTT assay studies showed that the synthesized nanoparticles induced cell death. Moreover, real-time PCR was employed to investigate autophagy markers and the effect of nanoparticles on the apoptosis process, demonstrating a significant effect of the synthesized compounds in this regard.


Asunto(s)
Nanopartículas del Metal , Panax , Rosmarinus , Paladio/química , Platino (Metal)/farmacología , Nanopartículas del Metal/química , Espectroscopía Infrarroja por Transformada de Fourier , Extractos Vegetales/farmacología , Extractos Vegetales/química
2.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38474153

RESUMEN

Cell fate instability is a crucial characteristic of aging and appears to contribute to various age-related pathologies. Exploring the connection between bioactive substances and cell fate stability may offer valuable insights into longevity. Therefore, the objective of this study was to investigate the potential beneficial effects of ginseng oligopeptides (GOPs) isolated from Panax ginseng C. A. Meyer at the cellular level. Disruption of homeostasis of human umbilical vein endothelial cells (HUVECs) and PC-12 was achieved by culturing them in the growth medium supplemented with 200 µM of H2O2, and 25, 50, and 100 µg/mL GOPs for 4 h. Then, they were cultured in a H2O2-free growth medium containing different concentration of GOPs. We found that GOP administration retards the oxidative stress-induced cell instability in HUVECs by increasing cell viability, inhibiting the cell cycle arrest, enhancing telomerase (TE) activity, suppressing oxidative stress and an inflammatory attack, and protecting mitochondrial function. Furthermore, we hypothesized that GOPs may promote mitochondrial biosynthesis by upregulating PGC-1α expression. Similarly, GOPs positively regulated cell stability in PC-12; notably, the protective effect of GOPs on PC-12 mainly occurred through the inhibition of autophagic cell death of neuronal cells, while the protective effect on mitochondria was weak. In conclusion, it is evident that GOPs demonstrate potential beneficial effects in maintaining cell fate stability, thereby potentially contributing to an enhanced health span and overall well-being.


Asunto(s)
Antioxidantes , Panax , Humanos , Antioxidantes/farmacología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Panax/química , Peróxido de Hidrógeno/metabolismo , Extractos Vegetales/farmacología , Estrés Oxidativo , Oligopéptidos/farmacología
3.
Int J Biol Macromol ; 265(Pt 2): 131031, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38518930

RESUMEN

In this study, the effects of citric acid-autoclaving (CA-A) treatment on physicochemical and digestive properties of the native ginseng starches were investigated. The results showed that ginseng starch exhibited a B-type crystal structure with a low onset pasting temperature of 44.23 ± 0.80 °C, but high peak viscosity and setback viscosity of 5897.34 ± 53.72 cP and 692.00 ± 32.36 cP, respectively. The granular morphology, crystal and short-range ordered structure of ginseng starches were destroyed after CA-A treatment. The more short-chain starches were produced, resulting in the ginseng starches solubility increased. In addition, autoclaving, citric acid (CA) and CA-A treatment promoted polymerization and recrystallization of starch molecules, increased the proportion of amylopectin B1, and B3 chains, and improved molecular weight and resistant starch (RS) content of ginseng starches. The most significant multi-scale structural change was induced by CA-A treatment, which reduced the relative crystallinity of ginseng starch from 28.26 ± 0.24 % to 2.75 ± 0.08 %, and increased the content of RS to 54.30 ± 0.14 %. These findings provided a better understanding of the structure and properties of Chinese ginseng starches and offered new ideas for the deep processing of ginseng foods.


Asunto(s)
Ácido Cítrico , Panax , Ácido Cítrico/química , Almidón/química , Amilopectina/química , Viscosidad , Almidón Resistente , Amilosa/química
4.
J Ethnopharmacol ; 327: 118014, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38460576

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Chronic kidney disease can be caused by numerous diseases including obesity and hyperuricemia (HUA). Obesity may exacerbate the renal injury caused by HUA. Red ginseng, a steamed products of Panax ginseng Meyer root, is known for its remarkable efficacy in improving metabolic syndrome, such as maintaining lipid metabolic balance. However, the role of red ginseng on hyperuricemia-induced renal injury in obese cases remains unclear. AIM OF THE STUDY: This study aimed to investigate the action of red ginseng extract (RGE) on lipotoxicity-induced renal injury in HUA mice. MATERIALS AND METHODS: A high-fat diet (HFD)-induced obesity model was employed to initially investigate the effects of RGE on body weight, TC, OGTT, renal lipid droplets, and renal function indices such as uric acid, creatinine, and urea nitrogen. Renal structural improvement was demonstrated by H&E staining. Subsequently, an animal model combining obesity and HUA was established to further study the impact of RGE on OAT1 and ACC1 expression levels. The mechanisms underlying renal injury regulation by RGE were postulated on the basis of RNA sequencing, which was verified by immunohistochemical (including F4/80, Ki67, TGF-ß1, α-SMA, and E-cadherin), Masson, and Sirius red staining. RESULTS: RGE modulated HFD-induced weight gain, glucose metabolism, and abnormalities of uric acid, urea nitrogen, and creatinine. RGE alleviated the more severe renal histopathological changes induced by obesity combined with HUA, with down-regulated the protein levels of ACC1, F4/80, Ki67, TGF-ß1, and α-SMA, and up-regulated OAT1 and E-cadherin. CONCLUSIONS: RGE has ameliorative effects on chronic kidney disease caused by obesity combined with HUA by maintaining lipid balance and reducing renal inflammation and fibrosis.


Asunto(s)
Hiperuricemia , Panax , Insuficiencia Renal Crónica , Ratones , Animales , Hiperuricemia/tratamiento farmacológico , Hiperuricemia/patología , Factor de Crecimiento Transformador beta1 , Ácido Úrico , Creatinina , Antígeno Ki-67 , Obesidad/tratamiento farmacológico , Fibrosis , Panax/química , Cadherinas , Nitrógeno , Lípidos , Urea
5.
Phytomedicine ; 127: 155428, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38458086

RESUMEN

BACKGROUND: Previous studies have confirmed the antioxidant and anti-inflammatory effects of active ginseng components that protect against liver injury. However, ginseng-derived nanoparticles (GDNPs), low-immunogenicity nanovesicles derived from ginseng, have not been reported to be hepatoprotective. PURPOSE: In this study, we investigated whether GDNPs could attenuate alcohol-induced liver injury in LO2 cells and mice by modulating oxidative stress and inflammatory pathways, thereby advancing the theoretical basis for the development of novel pharmacological treatments. STUDY DESIGN: Alcohol was used to construct in vitro and in vivo models of alcoholic liver injury. To explore the mechanisms by which GDNPs exert their protective effects against alcoholic liver injury, we examined the expression of oxidative stress-related genes and analysed inflammatory responses in vitro and in vivo. The experimental findings were verified using network pharmacology. METHODS: The composition of the GDNPs was analysed using liquid chromatography-mass spectrometry. GDNPs were extracted and purified using differential ultracentrifugation and sucrose density gradient centrifugation. In vitro models of alcoholic liver injury were established using LO2 cells, whereas C57BL/6 J mice were used as in vivo models. Oxidative stress, inflammation, and liver injury indicators were measured using appropriate kits. Levels of proteins associated with oxidative stress and inflammation were measured via western blot, while nuclear factor erythroid2-related factor 2 (Nrf2) and NF-κB protein expression was tested using immunofluorescence, immunohistochemistry, and flow cytometry. The levels of relevant transcription factors were determined using qPCR. Experimental haematoxylin and eosin staining was used to characterise the liver histological appearance and damage in mice. Network pharmacological analysis of GDNP mRNA sequencing of GDNPs was used to predict drug targets and disease associations using TCMSP. RESULTS: GDNPs primarily included 77 compounds, including organic acids and their derivatives, amino acids and their derivatives, sugars, terpenoids, and flavonoids. GDNPs have features that allow them to be taken up by LO2 cells and promote their proliferation. In vitro data indicated that GDNPs reduced the levels of alcohol-induced reactive oxygen species by activating the Nrf2/HO-1 signalling pathway, whilst inhibiting the NF-κB pathway and thereby reducing NO, tumour necrosis factor-α, and interleukin-1ß levels to alleviate inflammation. An in vivo model showed that GDNPs improved the liver parameters and pathology in mice with alcoholic liver injury. GDNPs activate the Nrf2/HO-1/Keap1 signalling pathway in a p62-dependent manner to exert antioxidant effects. Furthermore, the TLR4/NF-κB signalling pathway was involved in the in vivo anti-inflammatory effect. Network pharmacology also confirmed that the effects of GDNPs on liver disease were associated with oxidative stress and inflammation-related targets and pathways. CONCLUSION: This study showed for the first time that GDNPs can alleviate alcohol-induced liver damage by activating the Nrf2/HO1 signalling pathway and blocking the NF-κB signalling pathway, thus lowering oxidative stress and inflammatory responses. Hereby, we present the Nrf2/HO1 and NF-κB signalling pathways as potential targets and GDNPs as a novel therapeutic approach for the management of alcohol-induced liver damage.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Nanopartículas , Panax , Ratones , Animales , FN-kappa B/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Panax/química , Ratones Endogámicos C57BL , Inflamación , Estrés Oxidativo , Antioxidantes/farmacología , Etanol/efectos adversos , Antiinflamatorios/farmacología , Nanopartículas/química
6.
Phytomedicine ; 127: 155474, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38471369

RESUMEN

BACKGROUND: Inflammatory bowel disease (IBD) is characterized by a chronic inflammation of the intestine, which significantly affects patients' quality of life. As a perennial plant with the homology of medicine and food, Panax ginseng is known for its substantial anti-inflammatory effects in various inflammatory disorders. Ginsenosides, the main bioactive compounds of P. ginseng, are recognized for their efficacy in ameliorating inflammation. PURPOSE: Over the past decade, approximately 150 studies have investigated the effects of P. ginseng and ginsenosides on IBD treatment and new issues have arisen. However, there has yet to be a comprehensive review assessing the potential roles of ginsenosides in IBD therapy. METHOD: This manuscript strictly adheres to the PRISMA guidelines, thereby guaranteeing systematic synthesis of data. The research articles referenced were sourced from major scientific databases, including Google Scholar, PubMed, and Web of Science. The search strategy employed keywords such as "ginsenoside", "IBD", "colitis", "UC", "inflammation", "gut microbiota", and "intestinal barrier". For image creation, Figdraw 2.0 was methodically employed. RESULTS: Treatment with various ginsenosides markedly alleviated clinical IBD symptoms. These compounds have been observed to restore intestinal epithelia, modulate cellular immunity, regulate gut microbiota, and suppress inflammatory signaling pathways. CONCLUSION: An increasing body of research supports the potential of ginsenosides in treating IBD. Ginsenosides have emerged as promising therapeutic agents for IBD, attributed to their remarkable efficacy, safety, and absence of side effects. Nevertheless, their limited bioavailability presents a substantial challenge. Thus, efforts to enhance the bioavailability of ginsenosides represent a crucial and promising direction for future IBD research.


Asunto(s)
Ginsenósidos , Enfermedades Inflamatorias del Intestino , Panax , Humanos , Ginsenósidos/farmacología , Ginsenósidos/uso terapéutico , Calidad de Vida , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Inflamación/tratamiento farmacológico
7.
J Agric Food Chem ; 72(12): 6613-6624, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38501445

RESUMEN

Propaquizafop is a highly efficient aryloxy phenoxy propionate chiral herbicide. However, the use of propaquizafop, including its safe use methods, residue patterns, dietary risk assessment, and maximum residue limits, for ginseng, a traditional Chinese medicinal plant, has not been studied. An analytical method was established for the simultaneous determination of propaquizafop and its four metabolites in ginseng soil, fresh ginseng, ginseng plant, and dried ginseng using HPLC-MS/MS. This approach showed good linearity (R2 ranging from 0.9827 to 0.9999) and limit of quantification ranging from 0.01 to 0.05 mg/kg. The intra- and interday recovery rates of this method ranged from 71.6 to 107.1% with relative standard deviation ranging from 1.3 to 23.2%. The method was applied to detect residual samples in the field, and it was found that the degradation of propaquizafop in ginseng plants and soil followed a first-order kinetic equation. R2 was between 0.8913 and 0.9666, and the half-life (t1/2) ranged from 5.04 to 8.05 days, indicating that it was an easily degradable pesticide (T1/2 < 30 days). The final propaquizafop residues in ginseng soil, plants, fresh ginseng, and dried ginseng ranged from 0.017 to 0.691 mg/kg. A dietary risk assessment was conducted on the final propaquizafop residue in fresh and dried ginseng. The results showed that the chronic exposure risk quotient values were less than 100% for fresh and dried ginseng (1.15% for fresh ginseng and 1.13% for dried ginseng). This illustrates that the dietary risk associated with the use of 10% propaquizafop emulsifiable concentrate in ginseng is very low. Thus, applying 750 mL/ha of propaquizafop on ginseng could not pose an unacceptable risk to public health. The results of the present study support the registration of propaquizafop in ginseng.


Asunto(s)
Panax , Residuos de Plaguicidas , Contaminantes del Suelo , Espectrometría de Masas en Tándem/métodos , Panax/química , Residuos de Plaguicidas/análisis , Contaminantes del Suelo/química , Medición de Riesgo , Semivida , Suelo/química , China
8.
Microb Ecol ; 87(1): 54, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38512483

RESUMEN

Chemical soil fumigation (CSF) and reductive soil disinfestation (RSD) have been proven to be effective agricultural strategies to improve soil quality, restructure microbial communities, and promote plant growth in soil degradation remediation. However, it is still unclear how RSD and CSF ensure soil and plant health by altering fungal communities. Field experiments were conducted to investigate the effects of CSF with chloropicrin, and RSD with animal feces on soil properties, fungal communities and functional composition, and plant physiological characteristics were evaluated. Results showed that RSD and CSF treatment improved soil properties, restructured fungal community composition and structure, enhanced fungal interactions and functions, and facilitated plant growth. There was a significant increase in OM, AN, and AP contents in the soil with both CSF and RSD treatments compared to CK. Meanwhile, compared with CK and CSF, RSD treatment significantly increased biocontrol Chaetomium relative abundance while reducing pathogenic Neonectria relative abundance, indicating that RSD has strong inhibition potential. Furthermore, the microbial network of RSD treatment was more complex and interconnected, and the functions of plant pathogens, and animal pathogen were decreased. Importantly, RSD treatment significantly increased plant SOD, CAT, POD activity, SP, Ca, Zn content, and decreased MDA, ABA, Mg, K, and Fe content. In summary, RSD treatment is more effective than CSF treatment, by stimulating the proliferation of probiotic communities to further enhance soil health and plant disease resistance.


Asunto(s)
Microbiota , Micobioma , Panax , Suelo/química , Agricultura/métodos , Microbiología del Suelo
9.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(2): 244-251, 2024 Feb 20.
Artículo en Chino | MEDLINE | ID: mdl-38501409

RESUMEN

OBJECTIVE: To investigate the protective effect of total saponins of Panax japonicus (TSPJ) against CCl4-induced acute liver injury (ALI) in rats and explore the underlying pharmacological mechanisms. METHODS: Male SD rat models of CCl4-induced ALI were given intraperitoneal injections of distilled water, 100 mg/kg biphenyl bisabololol, or 50, 100, and 200 mg/kg TSPJ during modeling (n=8). Liver functions (AST, ALT, TBil and ALP) of the rats were assessed and liver pathologies were observed with HE staining. Immunohistochemistry was used to detect the expressions of PI3K/Akt/NF-κB signaling pathway molecules in liver tissue; ELISA was used to determine the levels of T-SOD, GSH-Px, and MDA. Western blotting was performed to detect the expression levels of PI3K-Akt and SIRT6-NF-κB pathways in the liver tissue. RESULTS: Network pharmacological analysis indicated that the key pathways including PI3K/Akt mediated the therapeutic effect of TSPJ on ALI. In the rat models of ALI, treatments with biphenyl bisabololol and TSPJ significantly ameliorated CCl4-induced increase of serum levels AST, ALT, ALP, TBil and MDA and decrease of T-SOD and GSH-Px levels (all P < 0.01). The rat models of ALI showed significantly increased expression of p-NF-κB (P < 0.01), decreased expressions of PI3K, p-Akt and SIRT6 proteins, and elevated expression levels of p-NF-κB, TNF-α and IL-6 proteins in the liver, which were all significantly improved in the treatment groups (P < 0.05 or 0.01). CONCLUSION: TSPJ can effectively alleviate CCl4-induced ALI in rats by suppressing inflammatory responses and oxidative stress in the liver via regulating the PI3K/Akt and SIRT6/NF-κB pathways.


Asunto(s)
Compuestos de Bifenilo , Panax , Saponinas , Sirtuinas , Ratas , Masculino , Animales , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Saponinas/farmacología , Saponinas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Panax/metabolismo , Ratas Sprague-Dawley , Transducción de Señal , Hígado/metabolismo , Sirtuinas/metabolismo , Sirtuinas/farmacología , Superóxido Dismutasa/metabolismo
10.
NPJ Biofilms Microbiomes ; 10(1): 24, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38503759

RESUMEN

Despite the potential benefits of herbal medicines for therapeutic application in preventing and treating various metabolic disorders, the mechanisms of action were understood incompletely. Ginseng (Panax ginseng), a commonly employed plant as a dietary supplement, has been reported to play its hot property in increasing body temperature and improving gut health. However, a comprehensive understanding of the mechanisms by which ginseng regulates body temperature and gut health is still incomplete. This paper illustrates that intermittent supplementation with ginseng extracts improved body temperature rhythm and suppressed inflammatory responses in peripheral metabolic organs of propylthiouracil (PTU)-induced hypothermic rats. These effects were associated with changes in gut hormone secretion and the microbiota profile. The in-vitro studies in ICE-6 cells indicate that ginseng extracts can not only act directly on the cell to regulate the genes related to circadian clock and inflammation, but also may function through the gut microbiota and their byproducts such as lipopolysaccharide. Furthermore, administration of PI3K inhibitor blocked ginseng or microbiota-induced gene expression related with circadian clock and inflammation in vitro. These findings demonstrate that the hot property of ginseng may be mediated by improving circadian clock and suppressing inflammation directly or indirectly through the gut microbiota and PI3K-AKT signaling pathways.


Asunto(s)
Relojes Circadianos , Microbioma Gastrointestinal , Panax , Ratas , Animales , Relojes Circadianos/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/farmacología , Inflamación , Transducción de Señal , Expresión Génica
11.
Food Funct ; 15(5): 2343-2365, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38323507

RESUMEN

American ginseng (Panax quinquefolius) has gained recognition as a medicinal and functional food homologous product with several pharmaceutical, nutritional, and industrial applications. However, the key regulators involved in ginsenoside biosynthesis, the spatiotemporal distribution characteristics of ginsenosides, and factors influencing ginsenosides are largely unknown, which make it challenging to enhance the quality and chemical extraction processes of the cultivated American ginseng. This review presents an overview of the pharmacological effects, biosynthesis and spatiotemporal distribution of ginsenosides, with emphasis on the impacts of biotic and abiotic factors on ginsenosides in American ginseng. Modern pharmacological studies have demonstrated that American ginseng has neuroprotective, cardioprotective, antitumor, antidiabetic, and anti-obesity effects. Additionally, most genes involved in the upregulation of ginsenoside biosynthesis have been identified, while downstream regulators (OSCs, CYP450, and UGTs) require further investigation. Futhermore, limited knowledge exists regarding the molecular mechanisms of the impact of biotic and abiotic factors on ginsenosides. Notably, the nonmedicinal parts of American ginseng, particularly its flowers, fibrous roots, and leaves, exhibit higher ginsenoside content than its main roots and account for a considerable amount of weight in the whole plant, representing promising resources for ginsenosides. Herein, the prospects of molecular breeding and metabolic engineering based on multi-omics to improve the unstable quality of cultivated American ginseng and the shortage of ginsenosides are proposed. This review highlights the gaps in the current research on American ginseng and proposes solutions to address these limitations, providing a guide for future investigations into American ginseng ginsenosides.


Asunto(s)
Ginsenósidos , Panax , Ginsenósidos/química , Flores/metabolismo , Hojas de la Planta/metabolismo , Panax/química , Raíces de Plantas/química
12.
Am J Chin Med ; 52(1): 35-55, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38353635

RESUMEN

Asian ginseng, the root of Panax ginseng C.A. Meyer, occupies a prominent position in the list of best-selling natural products in the world. There are two major types of ginseng roots: white ginseng and red ginseng, each with numerous preparations. White ginseng is prepared by air-drying fresh Asian ginseng roots after harvest. Red ginseng is prepared by steaming roots in controlled conditions using fresh or raw Asian ginseng. Red ginseng is commonly used in Asian countries due to its unique chemical profile, different therapeutic efficacy, and increased stability. Compared with the widespread research on white ginseng, the study of red ginseng is relatively limited. In this paper, after a botanical feature description, the structures of different types of constituents in red ginseng are systematically described, including naturally occurring compounds and those resulting from the steam processing. In red ginseng phytochemical studies, the number of published reports on ginsenosides is significantly higher than that for other constituents. Up to now, 57 ginsenosides have been isolated and characterized in red ginseng. The structural transformation pathways during steaming have been summarized. In comparison with white ginseng, red ginseng also contains other constituents, including polyacetylenes, Maillard reaction products, other types of glycosides, lignans, amino acids, fatty acids, and polysaccharides, which have also been presented. Appropriate analytical methods are necessary for differentiating between unprocessed white ginseng and processed red ginseng. Specific marker compounds and chemical profiles have been used to discriminate red ginseng from white ginseng and adulterated commercial products. Additionally, a brief phytochemical profile comparison has been made between white ginseng and black ginseng, and the latter is another type of processed ginseng prepared from white or red ginseng by steaming several times. In conclusion, to ensure the safe and effective use of red ginseng, phytochemical and analytical studies of its constituents are necessary and even crucial.


Asunto(s)
Terapias Complementarias , Ginsenósidos , Panax , Ginsenósidos/uso terapéutico , Vapor , Panax/química , Fitoquímicos
13.
J Chromatogr A ; 1719: 464774, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38422707

RESUMEN

Ginseng is beneficial in the prevention of many diseases and provides benefits for proper growth and development owing to the presence of various useful bioactive substances of diverse chemical heterogeneity (e.g., triterpenoid saponins, polysaccharides, volatile oils, and amino acids). As a result, understanding the therapeutic advantages of ginseng requires an in-depth compositional evaluation employing a simple and rapid analytical technique. In this work, three types of surface-activated carbon fibers (ACFs) were prepared by gas-phase oxidation, strong acid treatment, and Plasma treatment to obtain CO2-ACFs, acidified-ACFs, and plasma-ACFs, respectively. Three prepared ACFs were compared in terms of their physicochemical characterization (i.e., surface roughness and functional groups). A separation system was built using a column with modified ACFs, followed by mass spectrometry detection to investigate and determine substances of different polarities. Among the three columns, CO2-ACFs showed the optimum separation effect. 13 strong polar compounds (12 amino acids and1 oligosaccharide) and 15 lesser polar compounds (ginsenosides) were separated and identified successfully within 4 min in the ginseng sample. The data obtained by CO2-ACFs-TOF-MS/MS and UHPLC-TOF-MS/MS were compared. Our approach was found to be faster (4 min vs. 36 min) and greener, requiring much less solvent (1 mL vs. 10.8 mL), and power (0.06 vs. 0.6 kWh). The developed methodology can provide a faster, eco-friendly, and more reliable tool for the high-throughput screening of complex natural matrices and the simultaneous evaluation of several compounds in diverse samples.


Asunto(s)
Ginsenósidos , Panax , Ginsenósidos/análisis , Espectrometría de Masas en Tándem/métodos , Carbón Orgánico , Fibra de Carbono , Dióxido de Carbono/análisis , Extractos Vegetales/química , Aminoácidos , Panax/química , Cromatografía Líquida de Alta Presión/métodos
14.
Arch Virol ; 169(3): 53, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38381240

RESUMEN

A novel mitovirus, tentatively designated as "Fusarium oxysporum mitovirus 2" (FoMV2), was isolated from the pathogenic Fusarium oxysporum f. sp. ginseng strain 0414 infecting Panax ginseng. The complete genome of FoMV2 is 2388 nt in length with a GC content of 30.57%. It contains a large open reading frame (ORF) encoding a putative RNA-dependent RNA polymerase (RdRp) of 713 amino acids with a molecular weight of 83.05 kDa. The sequence identity between FoMV2 and Botrytis cinerea mitovirus 8 and Fusarium verticillioides mitovirus 1 was 87.94% and 77.85%, respectively. Phylogenetic analysis showed that FoMV2 belongs to the genus Unuamitovirus in the family Mitoviridae. To the best of our knowledge, this is the first report of an unuamitovirus isolated from F. oxysporum f. sp. ginseng causing ginseng root rot.


Asunto(s)
Aminoácidos , Fusarium , Panax , Filogenia , Peso Molecular
15.
J Med Food ; 27(4): 348-358, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38387003

RESUMEN

Ginseng is an ancient medicinal and edible plant with many health benefits, and can serve as a drug and dietary supplement, but there are few relevant studies on its use to ease ultraviolet (UV) irradiation damage. After 0.8 mg/mL ginseng extract (GE) was added to the medium of female Drosophila melanogaster subjected to UV irradiation, the lifespan, climbing ability, sex ratio, developmental cycle, and antioxidant capacity of flies were examined to evaluate the GE function. In addition, the underlying mechanism by which GE enhances the irradiation tolerance of D. melanogaster was explored. With GE supplementation, female flies subjected to UV irradiation exhibited an extension in their lifespan, enhancement in their climbing ability, improvement in their offspring sex ratio, and restoration of the normal development cycle by increasing their antioxidant activity. Finally, further experiments indicated that GE could enhance the irradiation tolerance of female D. melanogaster by upregulating the gene expressions of SOD, GCL, and components of the autophagy signaling pathway. Finally, the performance of r4-Gal4;UAS-AMPKRNAi flies confirmed the regulatory role of the autophagy signaling pathway in mitigating UV irradiation injury.


Asunto(s)
Drosophila melanogaster , Panax , Animales , Drosophila melanogaster/genética , Transducción de Señal , Antioxidantes , Autofagia
16.
J Nanobiotechnology ; 22(1): 48, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302938

RESUMEN

Inflammatory bowel disease (IBD) is closely linked to the homeostasis of the intestinal environment, and exosomes can be used to treat IBD due to their high biocompatibility and ability to be effectively absorbed by the intestinal tract. However, Ginseng-derived nanoparticles (GDNPs) have not been studied in this context and their mechanism of action remains unclear. Here, we investigated GDNPs ability to mediate intercellular communication in a complex inflammatory microenvironment in order to treat IBD. We found that GDNPs scavenge reactive oxygen species from immune cells and intestinal epithelial cells, inhibit the expression of pro-inflammatory factors, promote the proliferation and differentiation of intestinal stem cells, as well as enhancing the diversity of the intestinal flora. GDNPs significantly stabilise the intestinal barrier thereby promoting tissue repair. Overall, we proved that GDNPs can ameliorate inflammation and oxidative stress in vivo and in vitro, acting on the TLR4/MAPK and p62/Keap1/Nrf2 pathways, and exerting an anti-inflammatory and antioxidant effect. GDNPs mitigated IBD in mice by reducing inflammatory factors and improving the intestinal environment. This study offers new evidence of the potential therapeutic effects of GDNPs in the context of IBD, providing the conceptual ground for an alternative therapeutic strategy.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Nanopartículas , Panax , Animales , Ratones , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Nanopartículas/uso terapéutico , Factor 2 Relacionado con NF-E2/metabolismo , Panax/metabolismo , Receptor Toll-Like 4/metabolismo
17.
Nutrients ; 16(3)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38337727

RESUMEN

Panax ginseng, a traditional Chinese medicine with a history spanning thousands of years, faces overexploitation and challenges related to extended growth periods. Tissue-cultured adventitious roots and stem cells are alternatives to wild and field-cultivated ginseng. In this study, we assessed the in vitro xanthine oxidase and α-glucosidase inhibitory activities of saponin extracts among cultured cambial meristematic cells (CMC), adventitious ginseng roots (AGR), and field-cultivated ginseng roots (CGR). The xanthine oxidase (XO) and α-glucosidase inhibitory activities were determined by uric acid estimation and the p-NPG method, respectively. Spectrophotometry and the Folin-Ciocalteu, aluminum nitrate, and Bradford methods were employed to ascertain the total saponins and phenolic, flavonoid, and protein contents. The calculated IC50 values for total saponin extracts against XO and α-glucosidase were 0.665, 0.844, and >1.6 mg/mL and 0.332, 0.745, and 0.042 mg/mL for AGR, CMC, CGR, respectively. Comparing the total saponin, crude protein, and total phenolic contents revealed that AGR > CMC > CGR. To the best of our knowledge, this study presents the first report on the in vitro comparison of xanthine oxidase and α-glucosidase inhibitory activities among AGR, CMC, and CGR. The findings offer valuable insights into the development of hypoglycemic and antihyperuricemic medicinal, nutraceutical, and functional products utilizing AGR and CMC.


Asunto(s)
Panax , Saponinas , Panax/metabolismo , Xantina Oxidasa/metabolismo , alfa-Glucosidasas/metabolismo , Raíces de Plantas/metabolismo
18.
Molecules ; 29(3)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38338301

RESUMEN

American ginseng, a highly valuable crop in North America, is susceptible to various diseases caused by fungal pathogens, including Alternaria spp., Fusarium spp., and Pestalotiopsis spp. The development of alternative control strategies that use botanicals to control fungal pathogens in American ginseng is desired as it provides multiple benefits. In this study, we isolated and identified three fungal isolates, Alternaria panax, Fusarium sporotrichioides, and Pestalotiopsis nanjingensis, from diseased American ginseng plants. Ethanolic and aqueous extracts from the roots and leaves of goldenseal were prepared, and the major alkaloid constituents were assessed via liquid chromatography-mass spectrometry (LC-MS). Next, the antifungal effects of goldenseal extracts were tested against these three fungal pathogens. Goldenseal root ethanolic extracts exhibited the most potent inhibition against fungal growth, while goldenseal root aqueous extracts and leaf ethanolic extracts showed only moderate inhibition. At 2% (m/v) concentration, goldenseal root ethanolic extracts showed an inhibition rate of 86.0%, 94.9%, and 39.1% against A. panax, F. sporotrichioides, and P. nanjingensis, respectively. The effect of goldenseal root ethanolic extracts on the mycelial morphology of fungal isolates was studied via scanning electron microscopy (SEM). The mycelia of the pathogens treated with the goldenseal root ethanolic extract displayed considerable morphological alterations. This study suggests that goldenseal extracts have the potential to be used as a botanical fungicide to control plant fungal diseases caused by A. panax, F. sporotrichioides, or P. nanjingensis.


Asunto(s)
Alcaloides , Hydrastis , Panax , Hydrastis/química , Raíces de Plantas/química , Alcaloides/química , Extractos Vegetales/farmacología , Extractos Vegetales/análisis
19.
Molecules ; 29(3)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38338347

RESUMEN

The flower buds of three Panax species (PGF: P. ginseng; PQF: P. quinquefolius; PNF: P. notoginseng) widely consumed as health tea are easily confused in market circulation. We aimed to develop a green, fast, and easy analysis strategy to distinguish PGF, PQF, and PNF. In this work, fast gas chromatography electronic nose (fast GC e-nose), headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS), and headspace solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) were utilized to comprehensively analyze the volatile organic components (VOCs) of three flowers. Meanwhile, a principal component analysis (PCA) and heatmap were applied to distinguish the VOCs identified in PGF, PQF, and PNF. A random forest (RF) analysis was used to screen key factors affecting the discrimination. As a result, 39, 68, and 78 VOCs were identified in three flowers using fast GC e-nose, HS-GC-IMS, and HS-SPME-GC-MS. Nine VOCs were selected as potential chemical markers based on a model of RF for distinguishing these three species. Conclusively, a complete VOC analysis strategy was created to provide a methodological reference for the rapid, simple, and environmentally friendly detection and identification of food products (tea, oil, honey, etc.) and herbs with flavor characteristics and to provide a basis for further specification of their quality and base sources.


Asunto(s)
Panax , Compuestos Orgánicos Volátiles , Cromatografía de Gases y Espectrometría de Masas/métodos , Nariz Electrónica , Microextracción en Fase Sólida/métodos , Panax/química , Espectrometría de Movilidad Iónica , Compuestos Orgánicos Volátiles/análisis , Flores/química ,
20.
Molecules ; 29(3)2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38338369

RESUMEN

Panax quinquefolius (PQ) has been widely used in traditional Chinese medicine and functional food. Ginsenosides are the important functional components of PQ. The ginsenosides' diversity is deeply affected by the processing conditions. The ginsenosides in the steamed PQ have been not well-characterized yet because of the complexity of their structure. In the study, the comprehensive investigation of ginsenosides was performed on the steamed PQ with different steaming times and temperatures by UPLC-Q-TOF-MS. Based on the molecular weight, retention time and characterized fragment ions, 175 ginsenosides were unambiguously identified or tentatively characterized, including 45 protopanaxatriol type, 49 protopanaxadiol type, 19 octillol type, 6 oleanolic acid type ginsenosides, and 56 other ginsenosides. Ten new ginsenosides and three new aglycones were discovered in the steamed PQ samples through searching the database of CAS SciFindern. Principal component analysis showed the significant influence on the chemical components of PQ through different processing conditions. The steaming temperature was found to promote the transformation of ginsenosides more than the steaming time. The protoginsenosides were found to transform into the rare ginsenosides by elimination reactions. The malonyl ginsenosides were degraded into acetyl ginsenosides, and then degraded into neutral ginsenosides. The sugar chain experienced degradation, with position changes and configuration inversions. Furthermore, 20 (S/R)-ginsenoside Rh1, Rh2, Rg2, and Rh12 were found to transform from the S-configuration to the R-configuration significantly. This study could present a comprehensive ginsenosides profile of PQ with different steaming conditions, and provide technical support for the development and utilization of PQ.


Asunto(s)
Ginsenósidos , Panax , Ginsenósidos/química , 60705 , Panax/química , Cromatografía Liquida , Espectrometría de Masas en Tándem , Vapor , Cromatografía Líquida de Alta Presión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA